Leaf distribution options

Leaf Area Density Distribution (LADD)

Relative height

Options for the marginal distribution function of relative height dTypeLADDh are:

Distribution dTypeLADDh Function Definition
uniform 'uniform' $f(x) = 1$
beta 'beta' $f(x,\alpha,\beta) = (x^{\alpha-1}(1-x)^{\beta-1})/\mathrm{B}(\alpha,\beta)$
truncated Weibull 'weibull' $f(x,k,\lambda) = \frac{k}{\lambda} \left( \frac{x}{\lambda} \right)^{k-1} e^{-(x/\lambda)^k}$
polynomial 'polynomial' $f(x,p_0,\ldots,p_n) = p_n x^n + \ldots + p_1 x + a_0$

Here $\mathrm{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ is the beta function.

The possible parameter values pLADDh are:

Distribution pLADDh Parameter Values
uniform - -
beta [a b] a, b $> 0$
truncated Weibull [k l] k, l $> 0$
polynomial [p0 ... pN] p0, …, pN $\in \mathbb{R}$

Relative branch distance / relative distance from stem

Options for the marginal distribution function of relative branch distance / relative distance from stem dTypeLADDd are:

Distribution dTypeLADDd Function Definition
uniform 'uniform' $f(x) = 1$
beta 'beta' $f(x,\alpha,\beta) = (x^{\alpha-1}(1-x)^{\beta-1})/\mathrm{B}(\alpha,\beta)$
truncated Weibull 'weibull' $f(x,k,\lambda) = \frac{k}{\lambda} \left( \frac{x}{\lambda} \right)^{k-1} e^{-(x/\lambda)^k}$
polynomial 'polynomial' $f(x,p_0,\ldots,p_n) = p_n x^n + \ldots + p_1 x + a_0$

Here $\mathrm{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ is the beta function.

The possible parameter values pLADDd are:

Distribution pLADDd Parameter Values
uniform - -
beta [a b] a, b $> 0$
truncated Weibull [k l] k, l $> 0$
polynomial [p0 ... pN] p0, …, pN $\in \mathbb{R}$

Compass direction

Options for the marginal distribution function of compass direction dTypeLADDc are:

Distribution dTypeLADDc Function Definition
uniform 'uniform' $f(x) = 1/2\pi$
von Mises 'vonmises' $f(x,\mu,\kappa) = e^{\kappa \cos(x-\mu)}/(2 \pi \mathrm{I}_0(\kappa))$

Here $I_0(\kappa) = \frac{1}{2\pi} \int_0^{2\pi} e^{\kappa \cos(x)} dx$ is the modified Bessel function of the first kind of order 0.

The possible parameter values pLADDc are:

Distribution pLADDc Parameter Values
uniform - -
von Mises [m k] m $\in [0,2\pi]$, k $> 0$

Mixture models

For all LADD marginal distributions, it is also possible to define the distributions as mixture models of two distributions of the same type. This allows for a larger variety of marginal distribution shapes, like multimodal distributions. The definition of a mixture model requires setting the parameters of each distribution separately and defining a weighting factor among the distributions. The weighting factor w is given a value between 0 and 1, which determines the weights of the distributions to be w for the first distribution and 1-w for the second distribution. Mixture models can be defined for the following distributions:

Distribution pLADDh/pLADDd/pLADDc Parameter Values
beta [a1 b1 a2 b2 w] a1, b1, a2, b2 $> 0$, w $\in [0,1]$
truncated Weibull [k1 l1 k2 l2 w] k1, l1, k2, l2$> 0$, w $\in [0,1]$
von Mises [m1 k1 m2 k2 w] m1, m2 $\in [0,2\pi]$, k1, k2 $> 0$, w $\in [0,1]$

Leaf Orientation Distribution (LOD)

Inclination angle distribution

Options for the marginal distribution function of leaf inclination angle dTypeLODinc are:

Distribution dTypeLODinc Function Definition
uniform 'uniform' $f(\theta) = 2/\pi$
spherical 'spherical' $f(\theta) = \sin(\theta)$
generalized de Wit’s 'dewit' $f(\theta;a,b) = (1 + a \cos(b\theta))/(\frac{\pi}{2} + \frac{a}{b} \sin(b\frac{\pi}{2}))$
beta 'beta' $f(\theta,\alpha,\beta) = (\theta^{\alpha-1}(1-\theta)^{\beta-1})/\mathrm{B}(\alpha,\beta)$
constant value 'constant' -

Here $\mathrm{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ is the beta function.

The possible parameter values for the function fun_pLODinc are:

Distribution fun_pLODinc Parameter Values
uniform - -
spherical - -
generalized de Wit’s [a b] a $\in [-1,1]$, b $\in [2,4]$
beta [a b] a, b $> 0$
constant value c c $\in [0,\frac{\pi}{2}]$

Azimuth angle distribution

Options for the marginal distribution function of leaf azimuth angle dTypeLODaz are:

Distribution dTypeLODaz Function Definition
uniform 'uniform' $f(\phi) = 1/2\pi$
von Mises 'vonmises' $f(\phi,\mu,\kappa) = e^{\kappa \cos(\phi-\mu)}/(2 \pi \mathrm{I}_0(\kappa))$
constant value 'constant' -

Here $I_0(\kappa) = \frac{1}{2\pi} \int_0^{2\pi} e^{\kappa \cos(x)} dx$ is the modified Bessel function of the first kind of order 0.

The possible parameter values for the function fun_pLODaz are:

Distribution fun_pLODaz Parameter Values
uniform - -
von Mises [m k] m $\in [0,2\pi]$, k $> 0$
constant value c c $\in [0,2\pi]$

Leaf Size Distribution (LSD)

Options for the distribution function of leaf size distribution dTypeLSD are:

Distribution dTypeLSD Function Definition
uniform 'uniform' $f(x,a,b) = (x-a)/(b-a)$
normal 'normal' $f(x,\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$
constant value 'constant' -

The possible parameter values for the function fun_pLSD are:

Distribution fun_pLSD Parameter Values
uniform [a b] a, b $> 0$
normal [m v] m, v $> 0$
constant value c c $> 0$