Leaf distribution options
Leaf Area Density Distribution (LADD)
Relative height
Options for the marginal distribution function of relative height dTypeLADDh are:
| Distribution | dTypeLADDh | Function Definition |
|---|---|---|
| uniform | 'uniform' | $f(x) = 1$ |
| beta | 'beta' | $f(x,\alpha,\beta) = (x^{\alpha-1}(1-x)^{\beta-1})/\mathrm{B}(\alpha,\beta)$ |
| truncated Weibull | 'weibull' | $f(x,k,\lambda) = \frac{k}{\lambda} \left( \frac{x}{\lambda} \right)^{k-1} e^{-(x/\lambda)^k}$ |
| polynomial | 'polynomial' | $f(x,p_0,\ldots,p_n) = p_n x^n + \ldots + p_1 x + a_0$ |
| QSM-based* | 'qsm' | Nonparametric distribution |
Here $\mathrm{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ is the beta function.
The possible parameter values pLADDh are:
| Distribution | pLADDh | Parameter Values |
|---|---|---|
| uniform | - | - |
| beta | [a b] | a, b $> 0$ |
| truncated Weibull | [k l] | k, l $> 0$ |
| polynomial | [p0 ... pN] | p0, …, pN $\in \mathbb{R}$ |
Relative branch distance / relative distance from stem
Options for the marginal distribution function of relative branch distance / relative distance from stem dTypeLADDd are:
| Distribution | dTypeLADDd | Function Definition |
|---|---|---|
| uniform | 'uniform' | $f(x) = 1$ |
| beta | 'beta' | $f(x,\alpha,\beta) = (x^{\alpha-1}(1-x)^{\beta-1})/\mathrm{B}(\alpha,\beta)$ |
| truncated Weibull | 'weibull' | $f(x,k,\lambda) = \frac{k}{\lambda} \left( \frac{x}{\lambda} \right)^{k-1} e^{-(x/\lambda)^k}$ |
| polynomial | 'polynomial' | $f(x,p_0,\ldots,p_n) = p_n x^n + \ldots + p_1 x + a_0$ |
| QSM-based* | 'qsm' | Nonparametric distribution |
Here $\mathrm{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ is the beta function.
The possible parameter values pLADDd are:
| Distribution | pLADDd | Parameter Values |
|---|---|---|
| uniform | - | - |
| beta | [a b] | a, b $> 0$ |
| truncated Weibull | [k l] | k, l $> 0$ |
| polynomial | [p0 ... pN] | p0, …, pN $\in \mathbb{R}$ |
Compass direction
Options for the marginal distribution function of compass direction dTypeLADDc are:
| Distribution | dTypeLADDc | Function Definition |
|---|---|---|
| uniform | 'uniform' | $f(x) = 1/2\pi$ |
| von Mises | 'vonmises' | $f(x,\mu,\kappa) = e^{\kappa \cos(x-\mu)}/(2 \pi \mathrm{I}_0(\kappa))$ |
| QSM-based* | 'qsm' | Nonparametric distribution |
Here $I_0(\kappa) = \frac{1}{2\pi} \int_0^{2\pi} e^{\kappa \cos(x)} dx$ is the modified Bessel function of the first kind of order 0.
The possible parameter values pLADDc are:
| Distribution | pLADDc | Parameter Values |
|---|---|---|
| uniform | - | - |
| von Mises | [m k] | m $\in [0,2\pi]$, k $> 0$ |
Mixture models
For all LADD marginal distributions, it is also possible to define the distributions as mixture models of two distributions of the same type. This allows for a larger variety of marginal distribution shapes, like multimodal distributions. The definition of a mixture model requires setting the parameters of each distribution separately and defining a weighting factor among the distributions. The weighting factor w is given a value between 0 and 1, which determines the weights of the distributions to be w for the first distribution and 1-w for the second distribution. Mixture models can be defined for the following distributions:
| Distribution | pLADDh/pLADDd/pLADDc | Parameter Values |
|---|---|---|
| beta | [a1 b1 a2 b2 w] | a1, b1, a2, b2 $> 0$, w $\in [0,1]$ |
| truncated Weibull | [k1 l1 k2 l2 w] | k1, l1, k2, l2$> 0$, w $\in [0,1]$ |
| von Mises | [m1 k1 m2 k2 w] | m1, m2 $\in [0,2\pi]$, k1, k2 $> 0$, w $\in [0,1]$ |
* The QSM-based LADD
The QSM-based approach distributes the leaves evenly throughout the branch cylinders, emphasizing the leaves towards the tips of the branches, and can be considered as some kind of “automatic” leaf positioning for the QSM. This is useful if the user wants to generate a somewhat realistic foliage and the specific shape of LADD is not important. When using QSM-based approach the dTypeLADD field of each of the structural variables have to be set to 'qsm'. Also, the QSM-based approach is obviously available only when generating foliage on QSMs.
Leaf Orientation Distribution (LOD)
Inclination angle distribution
Options for the marginal distribution function of leaf inclination angle dTypeLODinc are:
| Distribution | dTypeLODinc | Function Definition |
|---|---|---|
| uniform | 'uniform' | $f(\theta) = 2/\pi$ |
| spherical | 'spherical' | $f(\theta) = \sin(\theta)$ |
| generalized de Wit’s | 'dewit' | $f(\theta;a,b) = (1 + a \cos(b\theta))/(\frac{\pi}{2} + \frac{a}{b} \sin(b\frac{\pi}{2}))$ |
| beta | 'beta' | $f(\theta,\alpha,\beta) = (\theta^{\alpha-1}(1-\theta)^{\beta-1})/\mathrm{B}(\alpha,\beta)$ |
| constant value | 'constant' | - |
Here $\mathrm{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ is the beta function.
The possible parameter values for the function fun_pLODinc are:
| Distribution | fun_pLODinc | Parameter Values |
|---|---|---|
| uniform | - | - |
| spherical | - | - |
| generalized de Wit’s | [a b] | a $\in [-1,1]$, b $\in [2,4]$ |
| beta | [a b] | a, b $> 0$ |
| constant value | c | c $\in [0,\frac{\pi}{2}]$ |
Azimuth angle distribution
Options for the marginal distribution function of leaf azimuth angle dTypeLODaz are:
| Distribution | dTypeLODaz | Function Definition |
|---|---|---|
| uniform | 'uniform' | $f(\phi) = 1/2\pi$ |
| von Mises | 'vonmises' | $f(\phi,\mu,\kappa) = e^{\kappa \cos(\phi-\mu)}/(2 \pi \mathrm{I}_0(\kappa))$ |
| constant value | 'constant' | - |
Here $I_0(\kappa) = \frac{1}{2\pi} \int_0^{2\pi} e^{\kappa \cos(x)} dx$ is the modified Bessel function of the first kind of order 0.
The possible parameter values for the function fun_pLODaz are:
| Distribution | fun_pLODaz | Parameter Values |
|---|---|---|
| uniform | - | - |
| von Mises | [m k] | m $\in [0,2\pi]$, k $> 0$ |
| constant value | c | c $\in [0,2\pi]$ |
Leaf Size Distribution (LSD)
Options for the distribution function of leaf size distribution dTypeLSD are:
| Distribution | dTypeLSD | Function Definition |
|---|---|---|
| uniform | 'uniform' | $f(x,a,b) = (x-a)/(b-a)$ |
| normal | 'normal' | $f(x,\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$ |
| constant value | 'constant' | - |
The possible parameter values for the function fun_pLSD are:
| Distribution | fun_pLSD | Parameter Values |
|---|---|---|
| uniform | [a b] | a, b $> 0$ |
| normal | [m v] | m, v $> 0$ |
| constant value | c | c $> 0$ |