Leaf distribution options
Leaf Area Density Distribution (LADD)
Relative height
Options for the marginal distribution function of relative height dTypeLADDh
are:
Distribution | dTypeLADDh | Function Definition |
---|---|---|
uniform | 'uniform' | $f(x) = 1$ |
beta | 'beta' | $f(x,\alpha,\beta) = (x^{\alpha-1}(1-x)^{\beta-1})/\mathrm{B}(\alpha,\beta)$ |
truncated Weibull | 'weibull' | $f(x,k,\lambda) = \frac{k}{\lambda} \left( \frac{x}{\lambda} \right)^{k-1} e^{-(x/\lambda)^k}$ |
polynomial | 'polynomial' | $f(x,p_0,\ldots,p_n) = p_n x^n + \ldots + p_1 x + a_0$ |
Here $\mathrm{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ is the beta function.
The possible parameter values pLADDh
are:
Distribution | pLADDh | Parameter Values |
---|---|---|
uniform | - | - |
beta | [a b] | a , b $> 0$ |
truncated Weibull | [k l] | k , l $> 0$ |
polynomial | [p0 ... pN] | p0 , …, pN $\in \mathbb{R}$ |
Relative branch distance / relative distance from stem
Options for the marginal distribution function of relative branch distance / relative distance from stem dTypeLADDd
are:
Distribution | dTypeLADDd | Function Definition |
---|---|---|
uniform | 'uniform' | $f(x) = 1$ |
beta | 'beta' | $f(x,\alpha,\beta) = (x^{\alpha-1}(1-x)^{\beta-1})/\mathrm{B}(\alpha,\beta)$ |
truncated Weibull | 'weibull' | $f(x,k,\lambda) = \frac{k}{\lambda} \left( \frac{x}{\lambda} \right)^{k-1} e^{-(x/\lambda)^k}$ |
polynomial | 'polynomial' | $f(x,p_0,\ldots,p_n) = p_n x^n + \ldots + p_1 x + a_0$ |
Here $\mathrm{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ is the beta function.
The possible parameter values pLADDd
are:
Distribution | pLADDd | Parameter Values |
---|---|---|
uniform | - | - |
beta | [a b] | a , b $> 0$ |
truncated Weibull | [k l] | k , l $> 0$ |
polynomial | [p0 ... pN] | p0 , …, pN $\in \mathbb{R}$ |
Compass direction
Options for the marginal distribution function of compass direction dTypeLADDc
are:
Distribution | dTypeLADDc | Function Definition |
---|---|---|
uniform | 'uniform' | $f(x) = 1/2\pi$ |
von Mises | 'vonmises' | $f(x,\mu,\kappa) = e^{\kappa \cos(x-\mu)}/(2 \pi \mathrm{I}_0(\kappa))$ |
Here $I_0(\kappa) = \frac{1}{2\pi} \int_0^{2\pi} e^{\kappa \cos(x)} dx$ is the modified Bessel function of the first kind of order 0.
The possible parameter values pLADDc
are:
Distribution | pLADDc | Parameter Values |
---|---|---|
uniform | - | - |
von Mises | [m k] | m $\in [0,2\pi]$, k $> 0$ |
Mixture models
For all LADD marginal distributions, it is also possible to define the distributions as mixture models of two distributions of the same type. This allows for a larger variety of marginal distribution shapes, like multimodal distributions. The definition of a mixture model requires setting the parameters of each distribution separately and defining a weighting factor among the distributions. The weighting factor w
is given a value between 0 and 1, which determines the weights of the distributions to be w
for the first distribution and 1-w
for the second distribution. Mixture models can be defined for the following distributions:
Distribution | pLADDh /pLADDd /pLADDc | Parameter Values |
---|---|---|
beta | [a1 b1 a2 b2 w] | a1 , b1 , a2 , b2 $> 0$, w $\in [0,1]$ |
truncated Weibull | [k1 l1 k2 l2 w] | k1 , l1 , k2 , l2 $> 0$, w $\in [0,1]$ |
von Mises | [m1 k1 m2 k2 w] | m1 , m2 $\in [0,2\pi]$, k1 , k2 $> 0$, w $\in [0,1]$ |
Leaf Orientation Distribution (LOD)
Inclination angle distribution
Options for the marginal distribution function of leaf inclination angle dTypeLODinc
are:
Distribution | dTypeLODinc | Function Definition |
---|---|---|
uniform | 'uniform' | $f(\theta) = 2/\pi$ |
spherical | 'spherical' | $f(\theta) = \sin(\theta)$ |
generalized de Wit’s | 'dewit' | $f(\theta;a,b) = (1 + a \cos(b\theta))/(\frac{\pi}{2} + \frac{a}{b} \sin(b\frac{\pi}{2}))$ |
beta | 'beta' | $f(\theta,\alpha,\beta) = (\theta^{\alpha-1}(1-\theta)^{\beta-1})/\mathrm{B}(\alpha,\beta)$ |
constant value | 'constant' | - |
Here $\mathrm{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ is the beta function.
The possible parameter values for the function fun_pLODinc
are:
Distribution | fun_pLODinc | Parameter Values |
---|---|---|
uniform | - | - |
spherical | - | - |
generalized de Wit’s | [a b] | a $\in [-1,1]$, b $\in [2,4]$ |
beta | [a b] | a , b $> 0$ |
constant value | c | c $\in [0,\frac{\pi}{2}]$ |
Azimuth angle distribution
Options for the marginal distribution function of leaf azimuth angle dTypeLODaz
are:
Distribution | dTypeLODaz | Function Definition |
---|---|---|
uniform | 'uniform' | $f(\phi) = 1/2\pi$ |
von Mises | 'vonmises' | $f(\phi,\mu,\kappa) = e^{\kappa \cos(\phi-\mu)}/(2 \pi \mathrm{I}_0(\kappa))$ |
constant value | 'constant' | - |
Here $I_0(\kappa) = \frac{1}{2\pi} \int_0^{2\pi} e^{\kappa \cos(x)} dx$ is the modified Bessel function of the first kind of order 0.
The possible parameter values for the function fun_pLODaz
are:
Distribution | fun_pLODaz | Parameter Values |
---|---|---|
uniform | - | - |
von Mises | [m k] | m $\in [0,2\pi]$, k $> 0$ |
constant value | c | c $\in [0,2\pi]$ |
Leaf Size Distribution (LSD)
Options for the distribution function of leaf size distribution dTypeLSD
are:
Distribution | dTypeLSD | Function Definition |
---|---|---|
uniform | 'uniform' | $f(x,a,b) = (x-a)/(b-a)$ |
normal | 'normal' | $f(x,\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$ |
constant value | 'constant' | - |
The possible parameter values for the function fun_pLSD
are:
Distribution | fun_pLSD | Parameter Values |
---|---|---|
uniform | [a b] | a , b $> 0$ |
normal | [m v] | m , v $> 0$ |
constant value | c | c $> 0$ |